The realization space is
  [1   0   1   1   x1 - 2    1   0                            1                                 0                                            x1 - 2    1]
  [0   1   1   1       -1   x1   0                            0                                 1                                                -1   x1]
  [0   0   0   1       -1    1   1   x1^2 - x1*x2 - 2*x1 + 3*x2   -x1^2 + x1*x2 + 2*x1 - 3*x2 + 1   x1^3 - x1^2*x2 - 4*x1^2 + 5*x1*x2 + 4*x1 - 6*x2   x2]
in the multivariate polynomial ring in 2 variables over ZZ
within the vanishing set of the ideal
Ideal with 2 generators
avoiding the zero loci of the polynomials
RingElem[x1 - 2, x1 - x2, x1 - 1, x1^3 - x1^2*x2 - 4*x1^2 + 5*x1*x2 + 4*x1 - 5*x2, x1^3 - x1^2*x2 - 4*x1^2 + 5*x1*x2 + 3*x1 - 5*x2 + 1, x1^3 - x1^2*x2 - 4*x1^2 + 5*x1*x2 + 4*x1 - 6*x2 + 1, x2 - 1, x1^4 - x1^3*x2 - 5*x1^3 + 6*x1^2*x2 + 8*x1^2 - 11*x1*x2 - 4*x1 + 7*x2 - 1, x1^3 - x1^2*x2 - 2*x1^2 + 3*x1*x2 - x1 + x2, x1^2 - x1*x2 - 2*x1 + 3*x2 - 1, x1^3 - x1^2*x2 - 3*x1^2 + 4*x1*x2 + x1 - 2*x2 + 1, x1^3 - x1^2*x2 - 3*x1^2 + 4*x1*x2 + x1 - 2*x2, x1^2 - x1*x2 - 2*x1 + 3*x2, x1, x1^3 - x1^2*x2 - 3*x1^2 + 4*x1*x2 + 2*x1 - 2*x2, x1^4 - x1^3*x2 - 4*x1^3 + 5*x1^2*x2 + 5*x1^2 - 7*x1*x2 - x1 + 2*x2, x1*x2 - 2*x2 + 1, x2, x1^3 - x1^2*x2 - 5*x1^2 + 6*x1*x2 + 6*x1 - 9*x2 + 1, x1^2 - x1*x2 - 3*x1 + 3*x2 + 1, x1^2 - 3*x1 + 3, x1^4 - x1^3*x2 - 4*x1^3 + 5*x1^2*x2 + 4*x1^2 - 6*x1*x2 + 1, x1^3 - x1^2*x2 - 2*x1^2 + 3*x1*x2 - x1 + 1, x1^3 - x1^2*x2 - 3*x1^2 + 4*x1*x2 + x1 - 3*x2 + 2, x1^3 - x1^2*x2 - 3*x1^2 + 4*x1*x2 + 2*x1 - 3*x2 + 1]